高校受験プロ家庭教師 弱点克服・志望校入試傾向対策
高校受験専門プロ家庭教師が語る

国際基督教大学高等学校 入試対策

出題傾向・攻略のための学習法・推奨テキスト

2017年度「国際基督教大学高等学校の数学」
攻略のための学習方法

特に、何かのジャンルを集中して演習するということだけで本問の得点に結びつくかどうか。『数学的発想法』、つまり物事を論理的に考えて、結論へ向け矛盾のない整合性の取れた論理の道筋をつけられるかどうかである。数学におけるスキル演習(問題演習)だけでは、不十分な設問設定になっている。

国際基督教大学高校の入試問題は、単純なスキル演習力を見る問題ではない。初見の問題で、『数学的論理』をいかなる思考的プロセスを経て確立された論理へと昇華してゆくのかということを自身で見つけ、理論として確立できる『力』がどれ程有しているかを見る設問である。

出題形式も、初めて見る受験生も多いと考えられるが、決して慌てることなく落ち着いて設問内容をよく読んで、問題の解法の手掛かりが会話本文のどの分に該当するのかを、よく考えて問題の本質を見抜くことである。

したがって、会話の中で、各々の『考え方』や『概念』について言及している部分をよく読み込んで、正確に落ちついて問題を考えるようにすること、これが本問のような問題に不可欠な解法へのアプローチである。

このような設問に対して、如何なる事前準備が有効であるかを一緒に考えてみよう。

通常、数学の試験に関しては、大量に問題(計算問題や求積〈面積・体積〉問題)を解くことが最優先として捉えられている。しかし、その様な事前準備においては『正解』を出すことが最大にして唯一の目標となり、公式を暗記している受験生は該当する公式に数値を当てはめて答えを出すという、ある意味では非常に『効率的』なアプローチに終始してしまうだろう。

そのような手法は、本問において合格点を取るのは難しいのであろう。なぜならば、公式などの原理・原則を根本から理解せず結果だけを『機械的』に導き出すことになれ切ってしまっているからである。

大切なことは、自分の『頭』で考え抜く、ということである。

例えば、ある公式があったとしたら、公式の初めから自分で計算し最終的には公式の形まで自力で導き出せるかどうかである。暗記したものはいずれ忘れてしまう。忘れてしまうことをネガティブに捉えてはいけない。人間はある意味では『物事を忘れる存在』なのである。覚えたばかりの知識を忘れてしまったら、再度繰り返して演習を繰り返せばいのである。

ここで述べたいことは、知識(特に数学)を暗記するのではなく理解することに重点を置くべきである、ということである。したがって、国際基督教大学高校の数学の入試問題に対応する学力は、数学的思考をしっかり身に付ける姿勢で普段の学習を行うべきである。

そのためにも、問題を解く上で使用した公式を自分で導き出す学習を励行して欲しい。

さらに、数学で使用する言葉や数字にはすべて『意味』があるということである。その意味をしっかり理解して、自由自在に操れる術をマスターしなければならない。

例えば、1次関数における切片とはどういう意味があるのかを考えるのである。単に、直線のグラフとy軸との交点のy座標である、としか覚えていないとしたら、その先の解法への広がりは限られたものになってしまう。切片であるb(y=ax+bのb)はx=0のときの(xに0を代入する)yの値である、という理解ができているかどうか。

このように考えていくことが、やがて自身の理論的思考力を鍛えることになり、結果的に解法の幅を広げることができるのである。大事なことは、単に問題を解き正解を導くことだけで満足せずに、どうしてそのような式を考えて解放するのかということを根本的な原理から考えるようなクセを付けることである。

志望校への最短距離を
プロ家庭教師相談

お問い合わせ・資料請求はこちら

2017年度「国際基督教大学高等学校の数学」の
攻略ポイント

特徴と時間配分

無理数、格子点・有理点に関する「資料文」を読みながら各設問に答えるという特殊な設問形式である。
試験時間の70分は使い切ってしまうだろう。
手際よく問題を見たら間髪入れずに手が動いて問題を解き始めなければ全問を解くのは難しいであろう。
当然見直しをする時間的余裕はない。

問題1~4は無理数に関する問題である<合計14分>

問題6~10は関数に関する問題である<合計56分>

関数とはいっても、通常、受験生が扱っている演習問題とは全く趣を異にする。
格子点など普段の学習では馴染みのない考え方や概念をしっかり学習しておくこと。

【大問】「資料文」を読みながら各設問に答える

  • 時間配分:

問題1は式の計算に関する基本的問題である<2分>
完答レベルである。

問題2は素因数の個数、無理数証明の問題である<6分>
無理数証明は「背理法(前提を設定し論証を進める過程で矛盾を生じさせ前提と真逆の事象が正しいとする証明方法)」を用いる。

問題3は方程式に関する定理の証明問題である<4分>

問題4は1辺の長さが1の正五角形の対角線が無理数になることを示す方程式の問題である<2分>

問題5は格子点、座標、有理点に関連した関数の問題である<6分>
本問で使用されている格子点や有理点などの概念的意味をしっかり理解して問題に取り組むこと。また、座標平面上で解法へ向けどのようなアプローチを行うかを考えること。

問題6は交点の座標、切片に関する問題である<7分>
2直線の交点の座標は2直線の式の連立方程式で求められる。2直線の交点が格子点(x座標、y座標ともに整数)である場合に、どのような事柄が言えるのかを考えること。

問題7は格子点及び有理点に関連する関数に関する問題である<6分>
これまでの資料文を読んで、格子点や有理点を満たす条件などをじっくり検討しながら、本問の問題を解きほぐして行く。

問題8は格子点の特性、数の性質、座標に関する問題である<9分>
③の1番目、2番目、3番目に近い格子点を見つけ出す法則性を考える。

問題9は座標に関する問題である<13分>
与えられた条件をいかに迅速にかつ正確に読み取るかが勝負である。

問題10は座標や平面図形(平面座標上)における関数の応用問題である<13分>
資料文をしっかり読み、どのような定理や条件が提示されているのかを見極めることが大事であり、その部分が明瞭になれば後は比較的正解が導き出せる。

以上、全体的に見れば、受験生が日頃扱っている演習問題とは全く趣を異にしている入試問題である。

「資料文」という文章を読ませて、いくつかの数学的テーマについて論理を展開し、具体的にその論理や定理を用いてさらなる計算式を立てさせ、答えを求めるという出題形式である。

この出題形式は当分の間、変更することはないだろうから、事前準備としては「論理」と「論理の組み立てを通じた解法」をしっかり習得しておいて欲しい。

攻略ポイント

特殊な出題形式であるため、初めて過去問を目にして戸惑いを感じる受験生も多いのではないだろうか。このような出題形式は、数学的思考力・論理力を推し量るためのものであると考える。

資料文を読まなくとも解答できる問題もあるが、その他の問題の大半は、資料文中で新たな概念・原理の解説を説明したうえで、問題を解答させる形式である。

このような出題形式は、未知なる原理に関して一定の説明を与えかつ演習例も示し、実際に受験生に問題演習をさせるという出題形式であり、個々の受験生の持つ論理的思考力や論理力を試す問題である。

したがって、そのような問題を攻略するためには、単純なスキル演習(問題演習)だけでは太刀打ちできないであろう。

できるならば、中学校で履修する公式の証明を自ら行うことをお勧めする。中学レベルの公式では不十分なので、ハイレベル問題集(具体的には『日々の演習』高校への数学など)において、高度な思考力を求められるような問題演習を数多くこなすことである。

志望校への最短距離を
プロ家庭教師相談

お問い合わせ・資料請求はこちら

国際基督教大学高等学校の科目別
入試対策一覧

TOP

創業以来、
最高峰のプロ教師陣を輩出

TRADITION
SINCE 1985

1985年法人設立以来、プロ家庭教師のクオリティーにこだわり続け、現役プロ教師の中でもトッププロと呼ばれる真の実力を兼ね備えた合格実績豊富な家庭教師のプロだけをご紹介しています。
特に中学受験·大学受験·医学部受験専門のプロ教師のクオリティーに自信があります。