高校受験プロ家庭教師 弱点克服・志望校入試傾向対策
高校受験専門プロ家庭教師が語る

市川高等学校 入試対策

出題傾向・攻略のための学習法・推奨テキスト

2023年度「市川高等学校の数学」
攻略のための学習方法

[複雑な問題に対応する]

高校受験には、教科書だけでは対応しにくい複雑な問題が登場する。例えば、【大問1】は、関数と図形が融合された複雑な問題、【大問3】は、高校数学で学習する数列にあたる内容を中学知識内で解答する内容であった。このような問題は、学校で学習する基礎知識を基に複雑になったり、単元が融合されたり、推測して解いたりする訓練が必要である。教材については、基礎~標準~応用~難問と段階的に取り組んでいこう。もし不安があれば、家庭教師に相談し、自分に合った教材を推薦してもらうといいだろう。

[記述力の強化]

記述力については、意識して訓練しておきたい。中学の標準カリキュラムにおいては、数学の記述を学ぶ時間は、ほとんどない。図形分野においては、簡単な合同や相似の証明を記述させる時間があるものの、量的に十分とはいいがたい。
例えば、市川高校の数学は、例年、図形分野以外にも、計算分野からも、記述が出題されてきている。過去問を解かせてみて、計算分野の記述にはじめて出会い、戸惑う志望者は、たくさんいる。
記述力の訓練は、集団授業では対応に限界があり、また参考書を見ながら自分で採点してみても、実力がついているのかわかりにくい。生徒と1対1で向き合える家庭教師の長所が、もっとも発揮されるのが記述力の訓練なので、不安があれば声をかけてほしい。

[答案の完成度を上げる]

本番で安定して得点できるように、答案の完成度を上げる訓練を積んでいこう。多くの志望者は、一問一問を解くことに満足しがちで、答案全体の完成度を意識するのは、受験の後半(中学3年の夏休みくらい)からだ。もっと早めに受験生として意識を持ち、答案の完成度を上げる技術を身につければ、有利になる答案の完成度は、2つの面から確認しておきたい。

1つめは、設問ごとの時間配分だ。時間配分ができていない志望者は、過去問を解いてみると、後半に簡単な設問があっても、得点できていない。つまり、前半の設問に時間をかけすぎていて、後半の設問にまで、手をつけられていない状態だ。受験では、答案全体の得点が、評価される。したがって、答案全体の得点を上げるために、それぞれの設問を解くべきか、あるいは解かないべきか、判断力が重要になる。過去問の演習は、そのような判断力を鍛える良い教材になる。

2つめは、見直しの技術だ。まずは答案全体でどれくらい見直しが必要になるのか、目安の時間を決めよう。あらかじめ時間を決めておくと、本番で迷いが生まれにくい。そして、見直しが効率的にできるような工夫をしよう。計算式を再利用したり、図形やグラフを確認したりしやすいように、丁寧に準備しておこう。

志望校への最短距離を
プロ家庭教師相談

お問い合わせ・資料請求はこちら

2023年度「市川高等学校の数学」の
攻略ポイント

特徴と時間配分

試験時間は50分で、得点は100点満点だ。大問数は5問で、作図や証明問題の記述が出題されている。大問中の小問は誘導のように順を追って解いていくような構成である。難問はないが、標準問題と応用問題でびっしりと出題されている。大問それぞれで10分以内で次の問題に移ったほうが良い。

【大問1】関数

  • 時間配分:8分

(1)<作図>点Aを通りy軸に垂直な直線と二次関数のグラフの交点を作図する。

(2)<面積>点Aとy軸について対称な点をA’とすると、△APB=△AA’B-△AA’P

(3)<面積>直線ABに平行な直線のy=x2乗と交わる点Qとし、△AQB=△ABRとなるy軸との交点をRとする。点Qと点Rを通る直線で等積変形によりもう一つの点Qを求める。

【大問2】場合の数

  • 時間配分:8分

(1)正方形AKMCで△ALH以外で3個、正方形BLND、正方形CMOEで4個

(2)線分AE上の格子点の点A~点Eを選ぶ場合を全て数え上げる。

【大問3】 規則性

  • 時間配分:10分

(1)n=10、n=n+2を代入して計算。

(2)n2-2n-1=2023を因数分解して解く。

(3)Aにおいて2023は507番目、Bにおいては46番目となる。Bに現れる奇数は全てAにも現れる。Bにおいて奇数は2分の46=23個ある。したがってCにおいて、-2から2023まで並べると507+46-23=530個となり、2023は530番目である。

【大問4】空間図形

  • 時間配分:10分

(1) <三平方の定理>∠AMC=90°だから△ACMで三平方の定理を利用。

(2) <三平方の定理>△AMH、△ABHで三平方の定理を利用。MH=x、BH=5-xとおく。

(3) <面積>Hを真上から見た球の平面図と△ACDを正面から見た平面図で考える。この2つの平面図を描くことができれば計算できるはず。

【大問5】

  • 時間配分:10分

(1)<面積>円の中心をOとして円周角を比より求める。△OAB+△OBC×3+△OCD+△OFA=六角形ABCDEFとなる。

(2)<証明>円周角と中心角の関係より、∠PFC=∠EDRが言えて、平行線の錯角より∠EDR=∠PRCが言える。

(3)△OCD、△ODFは正三角形、四角形OCDFはひし形になることを利用する。

攻略のポイント

図形の総合的知識を利用して、関数と図形の融合問題、平面図形や空間図形の計量問題でしっかりと得点して、確率や式の計算の応用問題にどれだけ対応できるかが、ポイントとなる。大問中の小問で順を追って正解していく必要があるので小問の初めから慎重に解答していくこと。(1)の結果(2)の結果を利用できるように解答してくことが求められる。また、作図や証明の記述で戸惑わないことが重要である。大問4(3)大問5(3)は正答できなくても他を正答できるように攻略したい。

志望校への最短距離を
プロ家庭教師相談

お問い合わせ・資料請求はこちら

市川高等学校の科目別
入試対策一覧

TOP

創業以来、
最高峰のプロ教師陣を輩出

TRADITION
SINCE 1985

1985年法人設立以来、プロ家庭教師のクオリティーにこだわり続け、現役プロ教師の中でもトッププロと呼ばれる真の実力を兼ね備えた合格実績豊富な家庭教師のプロだけをご紹介しています。
特に中学受験·大学受験·医学部受験専門のプロ教師のクオリティーに自信があります。