高校受験プロ家庭教師 弱点克服・志望校入試傾向対策
高校受験専門プロ家庭教師が語る

城北高等学校 入試対策

出題傾向・攻略のための学習法・推奨テキスト

2019年度「城北高等学校の数学」
攻略のための学習方法

特別な「ひらめき」や「テクニック」を要するような類の問題はない。事前の準備としては、基本的な問題集を徹底的に反復演習することである。

計算問題はしっかりやっておく必要がある。
文字式計算(指数法則)、乗法展開の公式に基づく式の展開、またその逆の因数分解、方程式(2次方程式における解の公式)、平方根(有理化、無理数の小数部分・整数部分)などの計算分野は基礎的事項をしっかり習得し、大量に問題演習を行うことで知識がしっかりと自分の解法への道具として強力な武器になり、やがて自信へとつながっていくことは間違いない。

計算問題で、受験生の多くが陥る落とし穴は、符号(特にマイナス)のつけ間違い、単純な計算間違いなどのケアレスミスである。ケアレスミスをどのようにすれば克服できるのか、受験生であれば誰もが知りたいことであろう。

結論から言えば、即効性のある有力な方法はない。日頃の勉強において、自身が十分気を付けてケアレスミス撲滅を意識していく以外にはないであろう。
出題されている計算問題は基本問題である。特別な知識やテクニックはいらない。着実に、そして冷静に与えられた計算問題に取り組むことである。

普段の学習で培われた「数学力・計算力」は、単に計算問題だけに留まるものではなく、それ以外の設問においても確実に正解を導く上での強力な武器となるいことは間違いない。

計算以外の分野では、関数である。
放物線と直線をからめた問題は、問題を作成する上で様々な切り口が可能である。2次方程式の解、相似を用いた面積、平面座標上の線対称移動・点対称移動に伴う直線の式などは、基礎から応用までしっかり演習を行っておいて欲しい。

また関数に関連して異色なところでは、座標平面に点Pが存在しサイコロを振って出た目にしたがって点Pが左右上下に、ある条件にしたがって移動するという設定の下、特定の図形ができる確率や任意の回数後に点Pが辿ってできた図形の求積問題など、作問の幅は無限に広がってゆく。

このような問題は、当然ながら初見である場合が多いが、解法のために使用する原理や法則は、受験生にとっては既知のものである。そうでなければ、そのような問題は解けないのである。

その場合(新傾向の初見の問題に直面した場合)に、受験生にとって大切なことは自分が知っている知識を適切にかつ迅速に取り出せて、問題にあてはめられるかどうかである。そのためには、条件反射的に問題解法への方針を立てたならば間髪を入れずに手が動き出すことである。

そのような状況に至るには、何をどのように行えばいいのか。繰り返しになるが、ひたすら「良問」を数多く解きまくることに尽きる。しかも、そのような作業の中で解法への方針の立て方、目のつけどころなどを学ばなければならない。

その他にも、押さえておきたいジャンルとしては、平面図形、立体図形そして場合の数・確率である。城北高校の問題は、それほど難解問題は出題されない。初見の問題もないはずである。典型的な標準問題を繰り返し演習することである。

平面図形においては図形の面積に絡んだ問題、三角形の内部・外部に形成される図形に相似や合同の考え方をあてはめて考える問題についても、問題集(標準タイプで十分)等で色々なバージョンの問題を解いてみることである。

立体図形についても、設問で扱われている立体図形を空間にイメージし、自在に回転されるなどの作業が違和感なく行えるかどうかが、正解へいかに速く正確に至るかのカギである。平面図形の面積問題でもそうであるが、立体図形においてもある体積を求めるような場合に、立体図形の切り取りや図形の移動などのアイデアを考えると、解法へ向けた見通しが意外と立てやすくなる場合もある。

新傾向の問題(規則性や論証に絡んだ問題)についても、そのような傾向の問題を集めた専門の問題集の演習を行っておくことも必要であろう。いずれにしても、基礎から標準レベルの問題演習を大量に行ってもらいたい。

志望校への最短距離を
プロ家庭教師相談

お問い合わせ・資料請求はこちら

2019年度「城北高等学校の数学」の
攻略ポイント

特徴と時間配分

【大問1】小問題集合設問 <9分>。(1)因数分解(2)式の計算(3)連立方程式(4)確率。

【大問2】小問題集合設問 <13分>。(1)図形(2)平面図形(3)辺の長さ。

【大問3】方程式の応用 <9分>。(1)食塩量(2)食塩水量。

【大問4】放物線と直線 <11分>。

【大問5】空間図形 <18分>。

 

【大問1】小問題集合設問

  • 時間配分:9分

(1)因数分解 <1分>。
2乗の差は和と差の積の考え方を利用する。

(2)式の計算 <2分>。
式の計算であるが、x+y=Aと置き換えて与式を変形してみること。

(3)連立方程式 <2分>。
平方根を含んだ連立方程式であるが、事前に問題集等で必ず演習しておくこと。

(4)サイコロを用いた確率 <4分>。
与えられた3つのグラフ(y=6/x、y=x/6、y=6x)を平面座標上に概形を描いてみよう。

【大問2】小問題集合設問

  • 時間配分:13分

(1)相似の考え方を用いた辺の長さを求める問題 <3分>。
与えられた三角形の中に相似な三角形を見つけること。求めたい辺の長さであるAB=xとし、xの2次方程式を解く。

(2)平面図形における求積問題 <5分>。
2つの円おいてできるいくつかのおうぎ形に注目すること。また、おうぎ形の中心角と円周角の関係もしっかり押さえておくこと。

(3)平面図形における辺の長さを求める問題 <5分>。
△ABCへ垂線の長さを求める問題であるが、与えられた三角錐の体積を△BCDを底面とし高さをADとして求めて考える。

【大問3】方程式の応用

  • 時間配分:9分

(1)食塩の量を求める標準問題 <3分>。
食塩水の濃度に関する問題である。問題レベルとしても極めて標準的であり、手際よく解答したい。

(2)食塩水の量を求める問題 <6分>。
食塩の量を基本にして、問題文の内容を整理しよう。最終的には、xの2次方程式を解く。

【大問4】放物線と直線

  • 時間配分:11分

(1)比例定数と座標を求める問題 <2分>。
内容的には、何度も繰り返し演習するような問題である。ケアレスミスにより計算間違いをしないように。

(2)座標を求める問題 <3分>。
放物線と直線との交点の座標を求める問題であるので、解法としては連立方程式である。

(3)座標を求める問題 <6分>。
四角形BDCMの面積が△OABの半分となるときに、どのようなことが事実として判明するのかをxy平面座標より考えること。

【大問5】空間図形

  • 時間配分:18分

(1)空間図形における2点間の長さを求める問題 <5分>。
立方体の1の頂点から異なる平面上の点までの長さを求める問題である。解法のために使用する原理としては三平方の定理であるので、直角三角形を見つけ出すこと。

(2)点が動いた長さを求める問題 <6分>。
動点がどの様な動きをするのかを理解すること。点は、弧を描いて動く。

(3)面積を求める問題 <7分>。
動点と点を結ぶ直線AXが動いたあとの面積をも求める問題である。動いた面積は、円錐の側面積の一部であること確実に押さえること。

攻略のポイント

全体的には基本問題から標準・応用まで、バランスのとれた出題になっている。事前の準備としては、標準的な問題集を使用し何度も繰り返して演習を行うこと。特に、計算、関数、平面図形、空間、確率などは難易度の高い問題演習を確実に行っておくこと。全く手も足も出ないという設問がないので、確実に75%の得点は欲しい。

頻出分野である『関数(放物線と直線)』、『平面及び空間図形』は徹底して演習すること。この2つの分野の融合問題のポイントもしっかり押さえておくことも大事である。

関数は必須問題である。また、新しい傾向問題として、是非目を通し演習して欲しい分野に、『規則性の問題』と『数の性質』がある。類似問題を40~50題を事前に解いて欲しい。

志望校への最短距離を
プロ家庭教師相談

お問い合わせ・資料請求はこちら

城北高等学校の科目別
入試対策一覧

TOP

創業以来、
最高峰のプロ教師陣を輩出

TRADITION
SINCE 1985

1985年法人設立以来、プロ家庭教師のクオリティーにこだわり続け、現役プロ教師の中でもトッププロと呼ばれる真の実力を兼ね備えた合格実績豊富な家庭教師のプロだけをご紹介しています。
特に中学受験·大学受験·医学部受験専門のプロ教師のクオリティーに自信があります。