高校受験プロ家庭教師 弱点克服・志望校入試傾向対策
高校受験専門プロ家庭教師が語る

桐蔭学園高等学校 入試対策

出題傾向・攻略のための学習法・推奨テキスト

2024年度「桐蔭学園高等学校の数学」
攻略のための学習方法

計算力を安定させる

計算力については、3点を意識して、鍛えておこう。
1つめは、計算の正確さだ。計算の数字が複雑になっても、正答率が下がらないように、練習を積んでおこう。過去問を参考にすれば、どこまで複雑な計算ができれなよいか、確認できる。

2つめは、計算と言っても平面図形の中での計算、連立方程式の計算、場合の数の中での計算など、それぞれの分野の中で計算の特徴がある。それぞれの分野の知識に基づいた計算方法がある。これは、志望校に精通した家庭教師に指導してもらうと的確である。

3つめは、計算の持久力だ。60分という長時間、集中力を切らさずに、計算していく持久力が必要になってくる。模試の数学の成績が、上がったり下がったりして不安定な生徒は、注意したい。持久力は、きちんと時間を測って演習を繰り返すことで、身についていく。1問1問にミスがないかではなく、答案全体でミスを減らせるようになろう。

答案の完成度を上げる。

本番で安定して得点できるように、答案の完成度を上げる訓練を積んでいこう。多くの志望者は、一問一問を解くことに満足しがちで、答案全体の完成度を意識するのは、受験の後半(中学3年の夏休みくらい)からだ。もっと早めに受験生として意識を持ち、答案の完成度を上げる技術を身につければ、有利になる。答案の完成度は、2つの面から確認しておきたい。

1つめは、設問ごとの時間配分だ。時間配分ができていない志望者は、過去問を解いてみると、後半に簡単な設問があっても、得点できていない。つまり、前半の設問に時間をかけすぎていて、後半の設問にまで、手をつけられていない状態だ。受験では、答案全体の得点が、評価される。したがって、答案全体の得点を上げるために、それぞれの設問を解くべきか、あるいは解かないべきか、判断力が重要になる。過去問の演習は、そのような判断力を鍛える良い教材になる。

2つめは、見直しの技術だ。まずは答案全体でどれくらい見直しが必要になるのか、目安の時間を決めよう。あらかじめ時間を決めておくと、本番で迷いが生まれにくい。そして、見直しが効率的にできるような工夫をしよう。計算式を再利用したり、図形やグラフを確認しやすいように、丁寧に準備しておこう。

桐蔭は、マークシート方式で解答していくので、答案用紙をすべて埋めてから、見直しをはじめては、間に合わないだろう。大問の途中でも、積極的に見直しをしていくべきだ。

志望校への最短距離を
プロ家庭教師相談

お問い合わせ・資料請求はこちら

2024年度「桐蔭学園高等学校の数学」の
攻略ポイント

特徴と時間配分

マークシート方式ということが最大の特徴で、指定された解答手順に沿って答えを正確に素早く求めていくことが必要となる。平面図形や空間図形の計量、関数と図形の融合問題が必須となる試験である。大問の最後の設問に詰まった場合は、後回しで最後に時間があれば取り組むのがよいだろう。

【大問1】 独立小問集合問題

  • 時間配分:8分

(1)(2)は確実に正答しよう。

(3)混ぜる前の2つの食塩=混ぜた後の食塩で方程式

(4)対角線のある正五角形の角度や辺は高校入試の頻出問題。多角形の内角の和、二等辺三角形を利用する。

(5)

【大問2】直角三角形

  • 時間配分:10分

(1)ABCで三平方の定理

(2)ABC∽△EDCだからABEDCACEより10:(6-CE)=6:CE

(3)AEFは二等辺三角形よりFAEA

(4)FからACに垂線FHを引くと、△AFH∽△ABCだからFHBCAFAB=3:8よりFH=3である。△AEF≡△DEFより、EA×FH×1/2=45/8

【大問3】場合の数

  • 時間配分:12分

(1)できあがる正三角形は△ACEである。よって太郎さんが頂点C、花子さんが頂点Eにいる場合か、太郎さんが頂点E、花子さんが頂点Cにいる場合

(2)鈍角三角形になるとき、△ABC、△ABF、△AEFのいずれかであり、それぞれ2通り。

(3)太郎さんのサイコロの目が3のとき、線分ADが直径となり花子さんが頂点にいる場合で4通り。また、太郎さんのサイコロの目が1のとき、太郎さんのいる頂点と花子さんのいる頂点を結ぶか、頂点と花子さんのいる頂点を結ぶ線分が円の直径となるときである。

(4)直角三角形の3本の辺の1本が円の直径となる場合であるので、(3)より頂点と太郎さんまたは花子さんのいる頂点を結ぶ線分が円の直径となる場合は、8通りある。また、太郎さんのいる頂点と花子さんのいる頂点を結ぶ線分が円の直径となる場合は2人がいる頂点を結ぶ線分がBECFになる場合である。

【大問4】一次関数と二次関数のグラフ

  • 時間配分:13分

(1)(2)連立方程式で素早く求めよう。

(3)ABとx軸の交点をとすると、△AOB=△AOC+△BOCである。

(4)からx軸に垂線AJを引くと、△AOJを1回転させてできる円錐-△ACJを1回転させてできる円錐を求める。

【大問5】空間図形

  • 時間配分:13分

(1)球の中心を通り面ABCに平行な平面と辺ADBECFの交点をとすると、△PQRは正三角形であり、(新聞取るさー変変で語呂合わせ)となる。正三角柱の高さは、球Oの直径と同じである。

(2)線部APと球Oの半径が同じであるから、△AOPにおいて三平方の定理。

(3)AGGHHDを含む3つの面の展開図を描いて求める。

(4)【正三角柱ABCDEF】-【四角錐BGHC】で求める。

攻略ポイント

基本的な設問から始まって、ところどころに難しい設問が配置されている。満点を取ることも可能ではあるが、受験者の合否に影響を与えるのは、いかに失点をしないかという、答案全体の完成度になるだろう。作業の速さ、計算の正確さ、答案全体の時間配分などを、過去問を利用して、あらかじめ訓練しておきたい。また、マークシートの特徴として、間違えてしまうと、連続して失点してしまう恐れがあるので、計画的に見直しをする必要がある。 指定された解法に沿って解くため、一つの解法ではなく別解を多く日頃から習得しよう。

志望校への最短距離を
プロ家庭教師相談

お問い合わせ・資料請求はこちら

桐蔭学園高等学校の科目別
入試対策一覧

TOP

創業以来、
最高峰のプロ教師陣を輩出

TRADITION
SINCE 1985

1985年法人設立以来、プロ家庭教師のクオリティーにこだわり続け、現役プロ教師の中でもトッププロと呼ばれる真の実力を兼ね備えた合格実績豊富な家庭教師のプロだけをご紹介しています。
特に中学受験·大学受験·医学部受験専門のプロ教師のクオリティーに自信があります。